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Abstract: In this paper an efficient, unsupervised, method of warp factor estima-
tion for vocal tract length normalisation (VTLN) is proposed. VTLN is a method
of feature-based speaker normalisation where the frequency spectrum is warped
to produce speaker-independent spectral features that are invariant to vocal tract
length. The degree to which the spectrum is warped is determined by the warping
factor, and it is the estimation of this warping factor that is the focus of this paper.
The warping factor is typically obtained using a maximum likelihood-based tech-
nique that requires a state alignment for each utterance and a GMM acoustic model
trained on warped features. The warp factor is typically quantised, with one of
N warp factors selected for each utterance. The proposed method of warp factor
estimation makes use of a small neural network, trained on un-warped features,
to directly estimate the quantised warp factor. Experimental results are presented
where, unlike previously published methods of unsupervised warp factor estima-
tion [1, 2], the proposed method is shown to give equivalent performance to the
typical supervised GMM-based method in terms of ASR accuracy at a significantly
lower computational cost.

1 Introduction

Performance of automatic speech recognition (ASR) is influenced by acoustic mismatches be-
tween training and evaluation data. These mismatches include environmental factors such as
noise and reverberation, as well as varying speaker characteristics. A range of techniques have
been developed to mitigate against these mismatches, and these can be broadly classified as be-
ing either model-based or feature-based [3]. Model-based approaches include multi-condition
training and model adaptation, whilst feature-based approaches include CMLLR, i-vectors and
vocal tract length normalisation (VTLN), and it is VTLN on which this paper is focused.

VTLN warps acoustic features in the spectral domain such that the resulting features are
mapped onto the feature space of a canonical speaker [4]. The degree to which the spectrum
is warped is determined by the warping factor and this must be estimated for every utterance,
unless the speaker is known in advance [5]. Both supervised and unsupervised methods of esti-
mation have been proposed in the past, with best performance observed using computationally
expensive, supervised, methods [1, 2, 6, 7]. This paper proposes a computationally inexpensive
method of estimation which is shown to give equivalent performance to the current best method.

Existing methods of warp factor estimation (WFE) are summarised in Section 2, with a de-
scription of the proposed method given in Section 2.3. Experimental results are then presented
in Section 3, which includes a justification of the use of VTLN with HMM-DNN acoustic mod-
els in Section 3.2. Final results are presented in Section 3.4.
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Figure 1 – Piecewise function used to warp spectral features in this work. Dashed and dotted lines
illustrate maximum degrees of warping (warping factor range of 0.85 - 1.15).

2 Vocal-Tract Length Normalisation (VTLN)

There are two key components to VTLN: i.) the method of warping the spectrum, and ii.) the
method of estimating the degree to which the spectrum is warped. Section 2.1 gives details of
the warping function used in this work whilst Sections 2.2 and 2.3 describe existing methods of
WFE and the proposed method of estimation, respectively.

2.1 Warping functions

The warping function parameterises how the spectrum is warped. Such functions typically take
a single parameter, the warp factor. Three typical warp functions are illustrated in [6], namely:
piecewise-linear, power function and combined piecewise-linear power function. In this work
the piecewise-linear warping function is used, as illustrated in Figure 1.

2.2 Existing methods of warp factor estimation

Most existing methods of WFE utilise GMMs. Best results are observed when a text-dependent
maximum-likelihood method of estimation is used where acoustic feature vectors, X are warped
with each warp factor, α , and then the warp factor that maximises the probability in Equation 1,
α̂ , is chosen where θ represents the acoustic model [6].

α̂ = argmax
α

Pr(Xα |θ ,W ) (1)

This method is computationally expensive as an initial recognition pass must be run to obtain
the word sequence, W . Several unsupervised methods have been proposed that remove the
requirement of W , but these methods do not usually perform as well as the supervised method [1,
2, 6]. In this work the method described in Equation 1 is used as a baseline.

2.3 Neural-network based warp factor estimation (NN-WFE)

The method of WFE proposed in this work uses a simple feed-forward neural network to es-
timate warp factor index (WPX) posteriors. A range of warping factors are quantised to N
equally spaced warp factor indices. The neural-network warp factor estimation (NN-WFE)
model is then trained with N + 1 output states, where the additional state models non-speech.
This differs from previous approaches where either the warp factor is directly estimated [2], or
where, instead of warping the acoustic features with the estimated warp factor, WPX posteriors
are augmented with MFCCs for acoustic modelling [8].



Training follows the standard stochastic gradient descent algorithm using the cross-entropy
criterion. This method requires every frame to be associated with a reference label indicating
either the target warp factor or the absence of speech. In this work, reference warp factors are
obtained using the existing supervised GMM-based method. Once the model has been trained
WPX estimates can be obtained by running a forward pass of the model at each frame. This level
of granularity is not typically required; usually we are most interested in estimating the WPX
at the utterance level. There are several methods through which these frame-level estimates can
be converted to utterance-level estimates, two of which are described below:

Voting The output state with the highest posterior (either one of N warp factor indices or non-
speech) is selected at each frame and counted as a single vote. After all frames of the
utterance have been processed, the WPX with the highest number of votes is selected.

Summed posteriors Posteriors are summed for each state across all frames of the utterance.
Once all frames have been processed, the WPX corresponding to the state with the highest
summed posterior is selected (excluding the non-speech state).

These techniques are evaluated in Section 3.3.1.

3 Experimental Results

Single-speaker telephony data, namely voicemail recordings, are used to evaluate the proposed
method; Section 3.1 describes the experimental setup in more detail. Next, the motivation be-
hind the use of VTLN with neural-network acoustic models is justified in Section 3.2, before
warp selection methods and optimal network configurations for NN-WFE are explored in Sec-
tions 3.3.1 and 3.3.2 before final results are presented in Section 3.4.

Unless otherwise stated, reported word error rate reductions (WERR) and runtime factor
reductions (RTFR) are relative to an equivalent model trained on unwarped features.

3.1 Experimental setup

Training and test data is sampled from two voicemail-to-text deployments: English as spoken
in the USA (eng-USA) and Castilian Spanish (spa-ESP). In both cases, training sets comprise
2000 hours of audio, with a further 10-20 hours split between development and evaluation sets.

MFCCs are used as the front-end for all models. The filterbank has 24 channels, and
subsequently all 24 DCT coefficients are retained and then cepstral mean normalised at the
utterance level. Warping factors are quantised to 16 warp factor indices where an index of 7 is
equivalent to no warping. The maximum range of warping is illustrated in Figure 1.

For the results in this paper, feed-forward neural-network acoustic models are evaluated
(HMM-DNN). Acoustic models are trained using the standard cross-entropy criterion, and then
further refined by sequence training. n-gram and RNN language models, trained on voicemail
messages of the target language, are used for search and rescoring, respectively.

A three stage decoding workflow is used, consisting of: i.) search, ii.) language model
rescoring and iii.) confusion network decoding. For the conventional method of WFE a small
HMM-GMM acoustic model is used to generate the word sequence, W , required for estimation.

3.2 VTLN with neural-network acoustic models

In the past, significant improvements in accuracy were observed when VTLN features were used
in the front-end of HMM-GMM based systems [3]. Since then, more complex neural network
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Figure 2 – Relative improvement observed by applying VTLN on spa-ESP voicemail data as a function
of HMM-DNN acoustic model size. Relative improvements are measured against models trained on
unwarped data whilst warped systems use existing GMM-based supervised method of WFE.

based models have become prominent, and there is an argument that these more complex models
can be trained to be robust to changes in speaker characteristics [9].

In order for a neural network to become invariant to individual speaker characteristics there
must exist sufficient modelling capacity within the network. There is therefore the possibility
that smaller networks may still benefit from feature engineering. To evaluate this, a range
of HMM-DNN systems were trained with a variety of network topologies, with and without
applying VTLN. Figure 2 plots the improvement from VTLN as a function of the total number
of weights in the acoustic model. Almost 3.5% WERR was measured with the smallest model,
with improvements from VTLN observed to be inversely proportional to network size to the
point where the largest network, with almost 50M weights, experiences a slight degradation
from the use of VTLN features. Whilst best absolute WER is observed with the largest of the
networks, small networks are useful in applications where very high throughput (and therefore
very low computational cost) is demanded, and it is in these scenarios that the conventional
approach to WFE has been prohibitively expensive. The proposed method of WFE has very
low computational cost and therefore allows the use of VTLN in such scenarios.

3.3 Neural-network warp factor estimation

3.3.1 Warp selection method

The two utterance-level warp selection methods described in Section 2.3 are now compared.
A NN-WFE model was trained on eng-USA data with varying context windows. Figure 3
compares the summed posterior against the voting scheme in terms of final WER as the context
window of the neural network is increased; no significant difference was observed and so the
summed posterior method is selected for its theoretically superior properties.

3.3.2 Network configuration

The size of the output layer is fixed by our existing configuration where the range of warp
factors is quantised in to sixteen warp indices. In terms of the size of the network this leaves
two properties to optimise: i.) the breadth of the context window at the input layer, and ii.) the
number and size of the hidden layers.

The effect of altering the size of the input context window is first evaluated by training a
range of networks with a single hidden layer of 256 nodes and then sweeping across a range of
context window sizes. Symmetric context windows are used where n frames either side of the
current frame are presented at the input layer. Context is reported in terms of n, and so the total
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Figure 3 – WERR from proposed method over unwarped model comparing summed posterior and
voting utterance level WFE methods in terms of network input context
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Figure 4 – WERR from proposed method over unwarped model as a function of network size

number of input frames is 2n+1. Performance of the estimation network is shown in terms of
WERR relative to a non-VTLN baseline in Figure 3.

Performance is shown to improve until n = 31, at which point performance plateaus. The
input context is therefore fixed at n = 31 in all future experiments. Given a frame analysis
window of 25ms and a shift of 10ms this corresponds to a temporal window of 645ms.

Next, the configuration of the hidden layers is considered. A range of network topologies
with one to four hidden layers, each with 256 to 1024 nodes, were evaluated. The effect of
varying the complexity of the network is illustrated in Figure 4.

Best performance is observed using a network comprising of 3.7M weights (three hidden
layers with 1024 nodes each), however similar performance (within 0.12% WERR) is observed
with a much smaller network, comprising 1.0M weights (2 hidden layers with 512 nodes each).
In the interests of computational complexity, the smaller network is selected.

In Section 3.2 it was noted that increasing the size of the acoustic model improves WER.
For this method of WFE to be useful, the use of a model with 1.0M weights must give an
improvement greater than just increasing the size of the acoustic model by a similar number of
weights. Linear regression was used to map between acoustic model size and WER, with and
without VTLN; WER was then estimated before and after adding 1.0M weights to a range of
acoustic model topologies. In all cases, gains from VTLN were significantly greater.

Figure 5 compares the warp factors estimated by the supervised GMM-based method and
the unsupervised DNN-based method. The distribution of warp factors typically observed for
male speakers (lower warping factors) is broadly similar, whilst for warp factors typically ob-
served for female speakers the variance of the distribution of estimated warp factors is smaller
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Figure 5 – Distributions of estimated warp factors on development set, comparing supervised GMM-
based method and unsupervised neural network based method

than that of the GMM-based method.

3.4 Final results

The final method is evaluated on both eng-USA and spa-ESP systems trained on voicemail data.
Performance is evaluated relative to a non-VTLN baseline and compared against the supervised
GMM-based WFE in Table 1. Acoustic scoring and search parameters of the recognition pass
were tuned to best WER at the RTF of the chosen speed mode (� real-time) for each system. In
the case of the system using the baseline GMM-based WFE, the parameters of the HMM-GMM
recognition pass used to obtain W were tuned independently; however, when added to the cost
of the main recognition pass these systems are found to exceed the RTF target by a large margin.
Separate attempts to jointly tune both passes to the target RTF failed to yield a working point
within the RTF budget.

Table 1 – Final results, presented on eng-USA and spa-ESP voicemail systems tuned to the same real-
time factor, comparing GMM-based WFE and proposed NN-based WFE

Language GMM NN-WFE
WERR RTFR WERR RTFR

eng-USA 4.65 -211.84 5.20 0.00
spa-ESP 2.77 -79.60 3.22 0.37

Due to the very low computational cost of estimating the warp factors using NN-WFE, both
NN-WFE based systems meet the RTF target. Word error rate reductions of 3.2 - 5.2% exceed
the improvements observed using the GMM-based method to give final systems that are both
faster and more accurate than the previous approach.

4 Summary

The proposed method of unsupervised neural network-based warp factor estimation has been
shown to meet, and in some cases exceed, performance of the traditional supervised GMM-
based method at a significantly lower cost at runtime. This enables the use of VTLN in appli-
cations where very low computational complexity is required, with small HMM-DNN acoustic
models shown to benefit most.
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