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Abstract: Text-independent speaker discrimination (SD) involves checking
whether two arbitrary speech signals are uttered by the same speaker or two dif-
ferent speakers. It has various applications such as speaker verification or speech
turn segmentation. However, emotionally colored speech introduces variations in
the acoustic features impairing the performance of baseline speech technologies.
This study focuses on investigating the influence of emotions on SD, applying
an approach based on a relative characterization of the speaker, called Relative
Speaker Characteristic (RSC). The intrinsic variability is modeled by using emo-
tional utterances represented in the benchmark corpus Berlin Database of Emo-
tional Speech. Three feature subsets based on Mel Frequency Cepstral Coeffi-
cients (MFCCs) are used to calculate the RSC that represents the SD specific
information, namely F1 = {13 MFCCs}, F2 = {F1 ∪ delta coefficients} and
F3 = {F2 ∪ delta−delta coefficients}. Emotionally neutral utterances serve as
training data. SD models are developed using a Support Vector Machine with a
linear kernel. By using the RSC that is based on F1, the best SD performance
is achieved. Regarding F1, the SD performance for utterances in the state of
joy (EER= 6.6%), boredom (EER= 6.69%) and anger (EER= 7.61%) is similar
to the SD for emotionally neutral utterances (EER= 7.34%). However, for utter-
ances in the state of fear (EER = 10.91%), disgust (EER= 23.76%) and sadness
(EER= 25.76%), the SD performance is unreliable.

1 Introduction

Text-independent acoustic speaker discrimination (SD) is termed as checking whether two ar-
bitrary speech signals are uttered by the same speaker or by two different speakers [1]. There
are various speech technologies based on SD, such as speaker identification, speaker verifi-
cation [2] and speech turn segmentation [3]. Furthermore, there is a growing need to apply
automatic SD to speech signals to provide information that could be used in assistance sys-
tems [4]. Since in many systems the speech is commonly emotional [5], several studies prove
that emotional speech strongly degrades the performance of current speech technologies [6, 7].
These studies used acted emotional speech. As shown in [8] for speaker verification relying
on the MSP-PODCAST corpus, performance also declines for naturalistic utterances with ex-
treme values for arousal and valence representing emotional attributes. Multi-modal assistance
systems are being developed for SD; for instance, using microphone arrays and cameras for
emotion-independent audio-visual speaker recognition [9]. However, this kind of SD remains
vague due to limited audio source location accuracy. In order to enhance the adaptability at
the algorithmic level, a robust text-independent acoustic speaker modeling technique should be
applied.
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Previous studies - mostly using acted emotional speech - show that the speaker modeling
techniques’ performances degrade when the models are trained on emotionally neutral speech
and tested on emotional speech uttered happy, angry or sad [10, 11, 7]. For instance, Gaus-
sian mixture modeling (GMM) techniques and Support Vector Machines (SVM) using Mel
Frequency Cepstral Coefficients (MFCCs) are strongly degraded by emotional speech [11, 12].
Hidden Markov Models (HMMs), Second-Order Circular Hidden Markov Models (CHMM2s)
and Suprasegmental Hidden Markov Models (SPHMMs) with Log-Frequency Power Coeffi-
cients (LFPC) have been tested by Shahin [13], who shows that SPHMMs perform best com-
pared to other models. Furthermore, Shahin proposes a two-stage recognizer comprising an
HMM-based emotion classifier and an SPHMM-based speaker classifier for speaker identifica-
tion in affective environments [14]. The accuracy based on the proposed two-stage recognizer
is significantly improved compared to a one-stage recognizer [14]. Moreover, by applying a fu-
sion of GMM-based classifiers with MFCCs, Line Spectral Frequencies and Temporal Energy
of Subband Cepstral Coefficients, speaker identification can be enhanced in both neutral and
emotional speech [15].

Another approach for developing emotion-independent speaker identification is proposed
by Wu et al. [6], introducing an emotion-dependent score normalization that copes with GMM-
universal background model (UBM) based score variability. Furthermore, emotion-added mod-
els [16] and emotion-state conversion [17] have been applied for affect compensation. Bao et al.
[10] proposed an affect compensation method called emotion attribute projection by adapt-
ing a channel compensation method. Moreover, feedforward neural networks [18] and auto-
associative neural networks [19] have been applied for feature transformation. When emotional
speech’s features are transformed into their emotionally neutral equivalents, speaker identifica-
tion accuracy on acted emotional speech can be significantly improved compared to approaches
using no transformation [19].

Ouamour et al. [1] proposed a feature reduction technique based on a relativistic approach.
The authors investigated a relative characterization of the speaker, called Relative Speaker Char-
acteristic (RSC), which is suitable for SD in a noisy environment or for telephonic speech [1].
This study focus on investigating the influence of emotions on SD, applying the RSC. Accord-
ingly, the following research question arises: Is the RSC-based SD’s [1] performance influenced
by emotional speech in comparison with emotionally neutral speech? To answer this question,
we present a performance evaluation of a text-independent RSC-based SD system, first, trained
and tested on emotionally neutral utterances, and second, tested on emotional speech.

2 Corpus and Feature Extraction

2.1 Emotional Speech Corpus

The benchmark speech database used in this study is the Berlin Database of Emotional Speech
(EMO-DB) [20]. The speakers are ten actors (five females). The female actors are on average
30.6 ± 5.6 years old and the male actors are on average 28.8 ± 3.1 years old. Each of them
simulates different emotional states when asked to recite ten different German utterances with
neutral semantic content. Overall, the database contains 494 different utterances labeled with
the following seven emotional states: anger, boredom, disgust, fear, joy, neutral and sadness.
The recordings sampled at 16 kHz provide a high audio quality, minimizing extrinsic variability
factors.



2.2 Feature Extraction

For each EMO-DB utterance, three feature subsets were calculated, namely F1 = {13 MFCCs},
F2 = {F1∪ delta coefficients} and F3 = {F2∪ delta−delta coefficients}, provided by open-
SMILE [21], where a feature vector was computed with 20 ms frame length every 10 ms. Nor-
malization was performed for each utterance using mean and standard deviation. The feature
vectors based on either F1, F2 or F3 were used to calculate covariance matrices. By using
the covariance matrices, RSCF1 based on F1, RSCF2 based on F2, and RSCF3 based on F3
are calculated. Only RSCFi with i ∈ {1,2,3} is used in the classification experiments and
modeling, respectively.

Given a set {x1,x2, ...,xn} of feature vectors resulting from the acoustic analysis of a speech
signal ux, the corresponding covariance matrix X can be calculated. Similarly, the covariance
matrix Y is extracted for a set of feature vectors {y1,y2, ...,ym} resulting from the acoustic anal-
ysis of a speech signal uy. By considering information provided by covariance matrices, RSC
is calculated constructing a meta-feature space. The RSC represents a similarity measure incor-
porating the relative statistics of a speaker compared with another speaker, which is considered
as a reference speaker [1]. According to [1], the RSC is defined as a matrix

RSC(ux,uy) = X−1 ·Y, (1)

where X, Y denotes the covariance matrices of ux, uy.
In order to enhance the SD information, Ouamour et al. [1] argued for combining RSC(sx,sy)

and RSC(sy,sx) (see Equation 2).

RSC(ux,uy) = [X−1 ·Y Y−1 ·X] (2)

Moreover, Ouamour et al. [1] hypothesize that the most important information for SD is located
in the principal diagonal of RSC(ux,uy) in Equation 1. The authors stated the following three
cases: first, RSC will be the identity matrix if the two utterances are identical and uttered by
the same speaker; second, RSC’s distance to the identity matrix will be relatively small if the
different utterances belong to the same speaker; and third, RSC will generate large values in
the matrix’ diagonal compared with the non-diagonal elements’ values if the utterances are
obtained by two different speakers. Hence, calculating the RSC is modified in Equation 3 [1].

RSC(ux,uy) = [diag(X−1 ·Y) diag(Y−1 ·X)] (3)

Since the most important information for SD is located in the diagonal [1], we simplify the
expression defined in Equation 3 by using only the variance of each variable (see Equation 4).

RSC(ux,uy) = [diag(Var−1
ux

·Varuy) diag(Var−1
uy

·Varux)], (4)

where Varux is the variance matrix for ux defined in Equation 5.

Varux =


σ2

1 (ux) 0 . . . 0
0 σ2

2 (ux) . . . 0
...

... . . . ...
0 0 . . . σ2

D(ux)

 (5)

Accordingly, the variance matrix Varuy for uy is calculated. The variances σi
2(ux) are extracted

from the variance vector given as

[σ2
1 (ux) σ

2
2 (ux) . . .σ

2
D(ux)] =

1
n−1

n

∑
i=1

| xi −x |2, (6)



where x denotes the mean feature vector and D denotes the feature vector’s dimension. Simi-
larly, the variances for an utterance uy are extracted.

Preprocessing ux such that there are no pauses in the utterance is a prerequisite to calculate
the RSC based on either F1, F2 or F3. Subsequently, the invertible matrices Varux and Varuy

are matrices such that σ2
i (ux) 6= 0 for all preprocessed ux. As Varux is a diagonal matrix with

non-zero principal diagonal elements, a simplification is undertaken by only calculating the
inverse elements of Varux’s principal diagonal, which is equivalent to calculating Var−1

ux
. In

summary, feature extraction starts with calculating F1, F2 and F3, and generates RSCF1 ,
RSCF2 and RSCF3 . Only RSCFi with i ∈ {1,2,3} is used in the classification experiments and
modeling, respectively. In the last step of the feature extraction process, standardization was
utilized as the RSC is a non-standardized measure.

3 Experimental Design

The two SD classes different speaker and same speaker are modeled with a SVM with a linear
kernel using the RSC (see Equation 4). An SVM is chosen since previous studies show that
GMMs do not provide suitable results for SD tasks [22]. The SVM classification score for
classifying an RSC feature vector is computed using Matlab.

Three experiments are conducted using RSCF1 , RSCF2 and RSCF3 introduced in section 2.
Emotionally neutral utterances from EMO-DB served as training data in the experiments. A ten-
fold cross-validation was conducted considering only emotionally neutral utterances to obtain
a baseline. By evaluating the influence of each emotion on SD, we answered our research
question. Thereunto, both detection error trade-off (DET), which gives the minimum cost,
according to a Detection Cost Function, and DET curves are applied using NIST’s DET-Curve
Plotting software1. The DET giving the minimum cost corresponds to the equal error rate
(EER).

4 Speaker Discrimination Results on Emotional Speech and Discussion

In this section, three experiments concerning the influence of emotion on the RSC-based SD
are presented and discussed.

Including emotionally neutral speech, the average EERs for all emotions regarding each
feature set are

• EERRSCF 1 = 12.67±8.41%,

• EERRSCF 2 = 13.83±8.01% and

• EERRSCF 3 = 31.97±12.88%.

In accordance with [11, 12], we can state that RSCF 1 and RSCF 2 are more descriptive than
RSCF 3 in SD considering a small gender-balanced set of ten speakers. However, it can be hy-
pothesized that the discriminative power of RSCF 3 increases in a dataset with a higher number
of speakers. This assumption is in accordance with [8] considering the MSP-PODCAST cor-
pus with 40 speakers, using F3 in an i-vector framework and reporting mean EERs under 5%
for naturalistic speech in the state of emotions with extreme values for the arousal and valence
scores.

According to Figures 1a and 1b, the EERs can be clustered into two categories. The first
category comprises similar EERs arising from speech in the emotions of neutral, boredom, joy

1https://www.nist.gov/itl/iad/mig/tools (accessed January 22, 2018)
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(a) Results of SVMs trained on RSCF1 .
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(b) Results of SVMs trained on RSCF2 .
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(c) Results of SVMs trained on RSCF3 .

Figure 1 – DET curves presenting results of SVMs trained on (a) RSCF1 , (b) RSCF2 , and (c) RSCF3 ex-
tracted from emotionally neutral utterances, and tested on utterances in the emotions of anger, boredom,
disgust, fear, joy, neutral and sadness. The black circles show the minimum cost points and correspond
to the EER.

and anger, where neutral can be understood as centroid of this EER cluster. EERs arising from
speech in the emotions of fear, disgust and sadness can be considered as outliers. Regarding
Figures 1a and 1b, the EERsRSCF 1 are smaller and closer together compared to the EERsRSCF 2 .
As shown in Figure 1c, classification which is based on RSCF 3 results in unreliable EERs
arising from speech in anger, boredom, disgust, fear, joy and sadness. The EERF 3 arising from
emotionally neutral speech appears only as an outlier in Figure 1c. This fact makes the RSCF 3
for SD unsuitable.

Considering the best suitable feature set F1 the EERsRSCF 1 for speech in the emotions of
fear (10.91%), disgust (23.76%) and sadness (25.76%) increase more compared to speech in
the emotions of joy (6.6%), boredom (6.69%) and anger (7.61%). A reason is given in a high
value for arousal in the emotions of fear and disgust [23]. Moreover, sadness has a high negative
valence in comparison with neutral. In the state of the art, there are no studies analyzing the ef-
fect of emotion on SD. Therefore, we consider study results in the following regarding baseline
speaker verification. Wu et al. [6] and Ghiurcau et al. [11] analyzed the influence of emotions
on a GMM-UBM system using MFCCs and delta coefficients calculated on an acted emotional
speech corpus. Compared to the EER in a test of emotionally neutral utterances (4.48%) in



[6], Wu et al. [6] reported that the EERs increased when utterances in the emotions of sadness
(12.59%), joy (17.24%), anger (17.93%) and fear (18.62%) were tested. In contrast to [6],
Ghiurcau et al. [11] presented only the accuracy for speech in the emotions of sadness (90%),
boredom (90%), fear (52%), joy (36%) and anger (36%), respectively. Ghiurcau et al. [12] re-
peated their previous study described in [11] using an SVM with polynomial kernel rather than
a GMM-UBM system. The authors obtained similar results compared to their previous study
in [11]. It is debatable to compare the results in [6] with those stated in [11] (or in [12]) as the
authors use different performance measures (EER [6] and accuracy [11, 12]), and their analy-
sis is based on different corpora (EMO-DB [11, 12] and an acted Chinese speech corpus [6]).
However, both works confirmed that speech in the emotions of anger highly degrades the per-
formance of speaker verification compared to emotionally neutral speech. In our work, speech
in the emotions of fear, disgust and sadness represents the most difficult emotional speech for
SD, whereas the SD is only marginally degraded by speech in the emotions of anger, boredom
and joy. Therefore, the RSCF i with i ∈ {1,2,3} is not a suitable speaker-specific measure when
speech is in the emotions of fear, disgust or sadness.

5 Conclusion and Outlook

In this work, the effect of emotions on RSC-based SD has been evaluated. It has been proved
that emotion involved in the testing utterances will aggravate the SD performance. In contrast to
baseline approaches, the RSC-based SD shows small performance loss when utterances affected
by boredom, joy or anger were tested. However, speech uttered in fear, disgust or sadness highly
degrades the SD performance, which is partly in accordance with tests of baseline systems (cf.
[6, 11, 12]). A reason for this performance decline is the large distance between those emotions
and neutral in the valence-arousal space. Moreover, the classification performance is affected
by the small number of utterances in those emotions compared to the number of utterances in
the emotions of joy, anger or boredom.

In comparison with GMM-based systems, the RSC-specific mapping was captured from
the training data itself, and no assumption about the underlying probability density functions is
given. Another advantage of the proposed method is that the number of free parameters is small.
Using RSCF 1, RSCF 2 or RSCF 3, the number of free parameters in the RSC approach is 23,
52, or 78, respectively. Given the simplifications in Equation 4, the simplified RSC approach is
computationally more efficient than the original RSC approach presented in [1].

Multi-modal assistance systems should robustly handle emotions with a high negative value
for valence such as sadness, or with a high positive value for arousal such as fear and disgust, to
adequately react to users’ distress situations. However, RSC-based SD’s reliability is degraded
by speech in those emotions. Therefore, as proposed in [14] for standard speaker identification,
applying a two-stage recognizer comprising an emotion classifier and a speaker classifier could
be suitable. Additionally, Ouamour et al. [1] showed that SD is degraded by models that are
based on mixed genders in contrast to mono-gender training and testing. Therefore, a gender-
dependent training and a gender recognizer can enhance the SD [1]. In order to simulate a
realistic scenario, a cross-corpus analysis will be applied using naturalistic emotional speech.
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